Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656648

ABSTRACT

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Subject(s)
Astrocytes , Cell Differentiation , Iron Deficiencies , Oligodendroglia , Astrocytes/metabolism , Astrocytes/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cation Transport Proteins/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Rats , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Deferoxamine/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Iron/metabolism
2.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Article in English | MEDLINE | ID: mdl-38385867

ABSTRACT

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Subject(s)
Cell Differentiation , Cell Proliferation , Corticosterone , Glucocorticoids , Mice, Inbred C57BL , Myelin Sheath , Oligodendroglia , Animals , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Cell Differentiation/drug effects , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Mice , Cell Proliferation/drug effects , Glucocorticoids/pharmacology , Corticosterone/pharmacology , Mice, Inbred DBA , Cells, Cultured , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Genetic Background , Male , Cell Lineage/drug effects , Stress, Psychological/metabolism
3.
Mol Neurobiol ; 59(1): 161-176, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34635980

ABSTRACT

Spinal cord injury (SCI), a devastating neurological impairment, usually imposes a long-term psychological stress and high socioeconomic burden for the sufferers and their family. Recent researchers have paid arousing attention to white matter injury and the underlying mechanism following SCI. Ferroptosis has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improving functional recovery after traumatic brain injury (TBI) and SCI. However, the role of ferroptosis in white matter injury and the therapeutic effect of ferrostatin-1 on SCI are still unknown. Here, our results indicated that ferroptosis played a pivotal role in the secondary white matter injury, and ferrostatin-1 could reduce iron and reactive oxygen species (ROS) accumulation and downregulate the ferroptosis-related genes and its products of IREB2 and PTGS2 to further inhibit ferroptosis in oligodendrocyte, finally reducing white matter injury and promoting functional recovery following SCI in rats. Meanwhile, the results demonstrated that ferrostatin-1 held the potential of inhibiting the activation of reactive astrocyte and microglia. Mechanically, the present study deciphers the potential mechanism of white matter damage, which enlarges the therapeutic effects of ferrostatin-1 on SCI and even in other central nervous system (CNS) diseases existing ferroptosis.


Subject(s)
Cyclohexylamines/pharmacology , Ferroptosis/drug effects , Phenylenediamines/pharmacology , Spinal Cord Injuries/metabolism , Spinal Cord/drug effects , White Matter/drug effects , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Female , Iron/metabolism , Microglia/drug effects , Microglia/metabolism , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Recovery of Function/drug effects , Spinal Cord/metabolism , White Matter/metabolism
4.
Mol Neurobiol ; 59(1): 93-106, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34626343

ABSTRACT

Anesthetics are commonly used in various medical procedures. Accumulating evidence suggests that early-life anesthetics exposure in infants and children affects brain development, causing psychiatric and neurological disorders. However, the underlying mechanisms are poorly understood. Using zebrafish larvae as a model, we found that the proliferation and migration of oligodendrocyte progenitor cells (OPCs) were severely impaired by the exposure of midazolam (MDZ), an anesthetic widely used in pediatric surgery and intensive care medicine, leading to a reduction of oligodendroglial lineage cell in the dorsal spinal cord. This defect was mimicked by the bath application of translocator protein (TSPO) agonists and partially rescued by genetic downregulation of TSPO. Cell transplantation experiments showed that requirement of TSPO for MDZ-induced oligodendroglial lineage cell defects is cell-autonomous. Furthermore, transmission electron microscopy and in vivo electrophysiological recording experiments demonstrated that MDZ exposure caused axon hypomyelination and action potential propagation retardation, resulting in delayed behavior initiation. Thus, our findings reveal that MDZ affects oligodendroglial lineage cell development and myelination in young animals, raising the care about its clinic use in infants and children.


Subject(s)
Anesthetics, Intravenous/pharmacology , Cell Differentiation/drug effects , Midazolam/pharmacology , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Receptors, GABA/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Differentiation/physiology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Receptors, GABA/genetics , Zebrafish , Zebrafish Proteins/genetics
5.
Acta Pharmacol Sin ; 43(3): 552-562, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33935286

ABSTRACT

We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.


Subject(s)
Fatty Acid-Binding Protein 7/metabolism , Neuroglia/metabolism , Oligodendroglia/metabolism , Oxidative Stress/physiology , alpha-Synuclein/metabolism , Animals , Arachidonic Acid/pharmacology , Cell Death/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Oligodendrocyte Precursor Cells/drug effects , Phospholipases A2/drug effects , Protein Binding/physiology , Psychosine/pharmacology
6.
Article in English | MEDLINE | ID: mdl-34642237

ABSTRACT

BACKGROUND AND OBJECTIVES: To test whether low concentrations of teriflunomide (TF) could promote remyelination, we investigate the effect of TF on oligodendrocyte in culture and on remyelination in vivo in 2 demyelinating models. METHODS: The effect of TF on oligodendrocyte precursor cell (OPC) proliferation and differentiation was assessed in vitro in glial cultures derived from neonatal mice and confirmed on fluorescence-activated cell sorting-sorted adult OPCs. The levels of the 8,9-unsaturated sterols lanosterol and zymosterol were quantified in TF- and sham-treated cultures. In vivo, TF was administered orally, and remyelination was assessed both in myelin basic protein-GFP-nitroreductase (Mbp:GFP-NTR) transgenic Xenopus laevis demyelinated by metronidazole and in adult mice demyelinated by lysolecithin. RESULTS: In cultures, low concentrations of TF down to 10 nM decreased OPC proliferation and increased their differentiation, an effect that was also detected on adult OPCs. Oligodendrocyte differentiation induced by TF was abrogated by the oxidosqualene cyclase inhibitor Ro 48-8071 and was mediated by the accumulation of zymosterol. In the demyelinated tadpole, TF enhanced the regeneration of mature oligodendrocytes up to 2.5-fold. In the mouse demyelinated spinal cord, TF promoted the differentiation of newly generated oligodendrocytes by a factor of 1.7-fold and significantly increased remyelination. DISCUSSION: TF enhances zymosterol accumulation in oligodendrocytes and CNS myelin repair, a beneficial off-target effect that should be investigated in patients with multiple sclerosis.


Subject(s)
Central Nervous System Diseases/drug therapy , Cholesterol/metabolism , Crotonates/pharmacology , Demyelinating Diseases/drug therapy , Hydroxybutyrates/pharmacology , Immunosuppressive Agents/pharmacology , Nitriles/pharmacology , Oligodendrocyte Precursor Cells/drug effects , Oligodendroglia/drug effects , Remyelination/drug effects , Toluidines/pharmacology , Animals , Animals, Newborn , Cells, Cultured , Central Nervous System Diseases/metabolism , Crotonates/administration & dosage , Disease Models, Animal , Hydroxybutyrates/administration & dosage , Immunosuppressive Agents/administration & dosage , Larva , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nitriles/administration & dosage , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Toluidines/administration & dosage , Xenopus laevis
7.
Brain ; 144(8): 2291-2301, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34426831

ABSTRACT

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Subject(s)
Blood-Brain Barrier/drug effects , Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Oligodendroglia/drug effects , Remyelination/drug effects , Spinal Cord/drug effects , Animals , Blood-Brain Barrier/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/drug effects , Homeostasis/drug effects , Mice , Mice, Transgenic , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Spinal Cord/metabolism
8.
ACS Chem Biol ; 16(7): 1288-1297, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34232635

ABSTRACT

Inducing the formation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs) represents a potential approach to repairing the loss of myelin observed in multiple sclerosis and other diseases. Recently, we demonstrated that accumulation of specific cholesterol precursors, 8,9-unsaturated sterols, is a dominant mechanism by which dozens of small molecules enhance oligodendrocyte formation. Here, we evaluated a library of 56 sterols and steroids to evaluate whether other classes of bioactive sterol derivatives may also influence mouse oligodendrocyte precursor cell (OPC) differentiation or survival. From this library, we identified U-73343 as a potent enhancer of oligodendrocyte formation that induces 8,9-unsaturated sterol accumulation by inhibition of the cholesterol biosynthesis enzyme sterol 14-reductase. In contrast, we found that mouse OPCs are remarkably vulnerable to treatment with the glycosterol OSW-1, an oxysterol-binding protein (OSBP) modulator that induces Golgi stress and OPC death in the low picomolar range. A subsequent small-molecule suppressor screen identified mTOR signaling as a key effector pathway mediating OSW-1's cytotoxic effects in mouse OPCs. Finally, evaluation of a panel of ER and Golgi stress-inducing small molecules revealed that mouse OPCs are highly sensitive to these perturbations, more so than closely related neural progenitor cells. Together, these studies highlight the wide-ranging influence of sterols and steroids on OPC cell fate, with 8,9-unsaturated sterols positively enhancing differentiation to oligodendrocytes and OSW-1 able to induce lethal Golgi stress with remarkable potency.


Subject(s)
Cell Differentiation/drug effects , Oligodendrocyte Precursor Cells/drug effects , Sterols/pharmacology , Animals , Cell Survival/drug effects , Cholestenones/pharmacology , Cholestenones/toxicity , Drug Evaluation, Preclinical , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Estrenes/pharmacology , Golgi Apparatus/drug effects , HeLa Cells , Humans , Mice , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Pyrrolidinones/pharmacology , Saponins/pharmacology , Saponins/toxicity , Small Molecule Libraries/pharmacology , Small Molecule Libraries/toxicity , Sterols/toxicity
9.
J Neurosci Res ; 99(9): 2216-2227, 2021 09.
Article in English | MEDLINE | ID: mdl-34051113

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.


Subject(s)
Botulinum Toxins, Type A/administration & dosage , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Oligodendrocyte Precursor Cells/drug effects , Synapses/drug effects , Animals , Cell Count/methods , Hippocampus/cytology , Hippocampus/pathology , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Oligodendrocyte Precursor Cells/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Synapses/pathology , Synapses/physiology
10.
Exp Biol Med (Maywood) ; 246(10): 1198-1209, 2021 05.
Article in English | MEDLINE | ID: mdl-33557607

ABSTRACT

White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats' memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.


Subject(s)
Cell Differentiation , Cyclic AMP Response Element-Binding Protein/metabolism , Ginkgolides/pharmacology , Lactones/pharmacology , Oligodendrocyte Precursor Cells/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , White Matter/pathology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Corpus Callosum/drug effects , Corpus Callosum/pathology , Memory/drug effects , Morris Water Maze Test , Myelin Basic Protein/metabolism , Myelin Sheath/pathology , Oligodendrocyte Precursor Cells/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vacuoles/drug effects , Vacuoles/metabolism , White Matter/drug effects , White Matter/physiopathology
11.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Article in English | MEDLINE | ID: mdl-33518671

ABSTRACT

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Subject(s)
Cerebral Cortex/pathology , Demyelinating Diseases/pathology , Oligodendrocyte Precursor Cells/pathology , Stroke, Lacunar/pathology , TRPM Cation Channels/metabolism , Animals , Cells, Cultured , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Corpus Callosum/blood supply , Corpus Callosum/cytology , Corpus Callosum/pathology , Demyelinating Diseases/etiology , Disease Models, Animal , Humans , Oligodendrocyte Precursor Cells/drug effects , Pregnenolone/pharmacology , Primary Cell Culture , Rats , Receptor, Platelet-Derived Growth Factor alpha , Stroke, Lacunar/complications , TRPM Cation Channels/agonists , Up-Regulation
12.
Neurobiol Dis ; 148: 105181, 2021 01.
Article in English | MEDLINE | ID: mdl-33189883

ABSTRACT

INTRODUCTION: Alterations of white matter integrity and subsequent white matter structural deficits are consistent findings in Fetal Alcohol Syndrome (FAS), but knowledge regarding the molecular mechanisms underlying these abnormalities is incomplete. Experimental rodent models of FAS have shown dysregulation of cytokine expression leading to apoptosis of oligodendrocyte precursor cells (OPCs) and altered oligodendrocyte (OL) differentiation, but whether this is representative of human FAS pathogenesis has not been determined. METHODS: Fetal brain tissue (12.2-21.4 weeks gestation) from subjects undergoing elective termination of pregnancy was collected according to an IRB-approved protocol. Ethanol (EtOH) exposure status was classified based on a detailed face-to-face questionnaire adapted from the National Institute on Alcohol Abuse and Alcoholism Prenatal Alcohol and Sudden Infant Death Syndrome and Stillbirth (PASS) study. Twenty EtOH-exposed fetuses were compared with 20 gestational age matched controls. Cytokine and OPC marker mRNA expression was quantified by Real-Time Polymerase chain reaction (qRT-PCR). Patterns of protein expression of OPC markers and active Capase-3 were studied by Fluorescence Activated Cell Sorting (FACS). RESULTS: EtOH exposure was associated with reduced markers of cell viability, OPC differentiation, and OL maturation, while early OL differentiation markers were unchanged or increased. Expression of mRNAs for proteins specific to more mature forms of OL lineage (platelet-derived growth factor α (PDGFRα) and myelin basic protein (MBP) was lower in the EtOH group than in controls. Expression of the multifunctional growth and differentiation-promoting growth factor IGF-1, which is essential for normal development, also was reduced. Reductions were not observed for markers of early stages of OL differentiation, including Nuclear transcription factor NK-2 homeobox locus 2 (Nkx2.2). Expression of mRNAs for the proinflammatory cytokine, tumor necrosis factor-α (TNFα), and several proinflammatory chemokines was higher in the EtOH group compared to controls, including: Growth regulated protein alpha/chemokine (C-X-C motif) ligand 1 (GRO-α/CXCL1), Interleukin 8/chemokine (C-X-C motif) ligand 8 (IL8/CXCL8), Chemokine (C-X-C motif) ligand 6/Granulocyte chemotactic protein 2 (CXCL16/GCP2), epithelial-derived neutrophil-activating protein 78/chemokine (C-X-C motif) ligand 5 (ENA-78/CXCL5), monocyte chemoattractant protein-1 (MCP-1). EtOH exposure also was associated with an increase in the proportion of cells expressing markers of early stage OPCs, such as A2B5 and NG2. Finally, apoptosis (measured by caspase-3 activation) was increased substantially in the EtOH group compared to controls. CONCLUSION: Prenatal EtOH exposure is associated with excessive OL apoptosis and/or delayed OL maturation in human fetal brain. This is accompanied by markedly dysregulated expression of several chemokines and cytokines, in a pattern predictive of increased OL cytotoxicity and reduced OL differentiation. These findings are consistent with findings in animal models of FAS.


Subject(s)
Alcohol Drinking , Apoptosis/drug effects , Cell Differentiation/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Oligodendrocyte Precursor Cells/drug effects , Oligodendroglia/drug effects , Abortion, Induced , Adult , Brain/cytology , Brain/drug effects , Brain/metabolism , Case-Control Studies , Female , Fetal Alcohol Spectrum Disorders , Fetus/drug effects , Fetus/metabolism , Gestational Age , Humans , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Young Adult
13.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003644

ABSTRACT

An adequate protection from oxidative and inflammatory reactions, together with the promotion of oligodendrocyte progenitor (OP) differentiation, is needed to recover from myelin damage in demyelinating diseases. Mitochondria are targets of inflammatory and oxidative insults and are essential in oligodendrocyte differentiation. It is known that nuclear factor-erythroid 2-related factor/antioxidant responsive element (NRF2/ARE) and peroxisome proliferator-activated receptor gamma/PPAR-γ response element (PPAR-γ/PPRE) pathways control inflammation and overcome mitochondrial impairment. In this study, we analyzed the effects of activators of these pathways on mitochondrial features, protection from inflammatory/mitochondrial insults and cell differentiation in OP cultures, to depict the specificities and similarities of their actions. We used dimethyl-fumarate (DMF) and pioglitazone (pio) as agents activating NRF2 and PPAR-γ, respectively, and two synthetic hybrids acting differently on the NRF2/ARE pathway. Only DMF and compound 1 caused early effects on the mitochondria. Both DMF and pio induced mitochondrial biogenesis but different antioxidant repertoires. Moreover, pio induced OP differentiation more efficiently than DMF. Finally, DMF, pio and compound 1 protected from tumor necrosis factor-alpha (TNF-α) insult, with pio showing faster kinetics of action and compound 1 a higher activity than DMF. In conclusion, NRF2 and PPAR-γ by inducing partially overlapping pathways accomplish complementary functions aimed at the preservation of mitochondrial function, the defense against oxidative stress and the promotion of OP differentiation.


Subject(s)
Mitochondria/genetics , NF-E2-Related Factor 2/genetics , Oligodendroglia/drug effects , PPAR gamma/genetics , Animals , Antioxidants/pharmacology , Cell Differentiation/drug effects , Dimethyl Fumarate/pharmacology , Humans , Mitochondria/drug effects , Neurogenesis/drug effects , Neurogenesis/genetics , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Organelle Biogenesis , Oxidative Stress/drug effects , Oxidative Stress/genetics , Pioglitazone/pharmacology , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics
14.
Proc Natl Acad Sci U S A ; 117(35): 21527-21535, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817520

ABSTRACT

Given the known neuroreparative actions of IL-33 in experimental models of central nervous system (CNS) injury, we predicted that compounds which induce IL-33 are likely to promote remyelination. We found anacardic acid as a candidate molecule to serve as a therapeutic agent to promote remyelination. Addition of anacardic acid to cultured oligodendrocyte precursor cells (OPCs) rapidly increased expression of myelin genes and myelin proteins, suggesting a direct induction of genes involved in myelination by anacardic acid. Also, when added to OPCs, anacardic acid resulted in the induction of IL-33. In vivo, treatment of with anacardic acid in doses which ranged from 0.025 mg/kg to 2.5 mg/kg, improved pathologic scores in experimental allergic encephalitis (EAE) and in the cuprizone model of demyelination/remyelination. Electron microscopic studies performed in mice fed with cuprizone and treated with anacardic acid showed lower g-ratio scores when compared to controls, suggesting increased remyelination of axons. In EAE, improvement in paralytic scores was seen when the drug was given prior to or following the onset of paralytic signs. In EAE and in the cuprizone model, areas of myelin loss, which are likely to remyelinate, was associated with a greater recruitment of IL-33-expressing OPCs in mice which received anacardic acid when compared to controls.


Subject(s)
Anacardic Acids/pharmacology , Interleukin-33/biosynthesis , Remyelination/drug effects , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Female , Interleukin-33/metabolism , Male , Mice , Mice, Inbred C57BL , Myelin Basic Protein/metabolism , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Remyelination/physiology , Stem Cells/metabolism
15.
J Cereb Blood Flow Metab ; 40(8): 1735-1736, 2020 08.
Article in English | MEDLINE | ID: mdl-32674700

ABSTRACT

Oligodendrocyte precursor cells (OPCs) give rise to mature myelin-forming oligodendrocytes during white matter development. In adult brains, some populations of OPCs remain to renew oligodendrocyte pools and myelin. Two recent studies highlight the importance of OPCs in white matter homeostasis. Genetic tracing studies suggest that age-related decline in OPCs may contribute to diminished myelin renewal and memory deficits in mouse models. Single cell transcriptomics and imaging may now define specific subsets of OPCs involved in process elaboration, motility and myelination. These advances raise the possibility of pursuing OPCs as novel therapeutic targets for vascular cognitive impairment.


Subject(s)
Aging/drug effects , Cerebrovascular Disorders/drug therapy , Cognitive Dysfunction/prevention & control , Oligodendrocyte Precursor Cells/drug effects , Oligodendroglia/drug effects , White Matter/drug effects , Aging/pathology , Animals , Humans , Myelin Sheath/pathology , Oligodendrocyte Precursor Cells/pathology , Oligodendroglia/pathology , White Matter/pathology
16.
Acta Neuropathol Commun ; 8(1): 120, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727582

ABSTRACT

Multiple system atrophy (MSA) is pathologically characterized by the presence of fibrillar α-synuclein-immunoreactive inclusions in oligodendrocytes. Although the myelinating process of oligodendrocytes can be observed in adult human brains, little is known regarding the presence of α-synuclein pathology in immature oligodendrocytes and how their maturation and myelination are affected in MSA brains. Recently, breast carcinoma amplified sequence 1 (BCAS1) has been found to be specifically expressed in immature oligodendrocytes undergoing maturation and myelination. Here, we analyzed the altered dynamics of oligodendroglial maturation in both MSA brains and primary oligodendroglial cell cultures which were incubated with α-synuclein pre-formed fibrils. The numbers of BCAS1-expressing oligodendrocytes that displayed a matured morphology negatively correlated with the density of pathological inclusions in MSA brains but not with that in Parkinson's disease and diffuse Lewy body disease. In addition, a portion of the BCAS1-expressing oligodendrocyte population showed cytoplasmic inclusions, which were labeled with antibodies against phosphorylated α-synuclein and cleaved caspase-9. Further in vitro examination indicated that the α-synuclein pre-formed fibrils induced cytoplasmic inclusions in the majority of BCAS1-expressing oligodendrocytes. In contrast, the majority of BCAS1-non-expressing mature oligodendrocytes did not develop inclusions on day 4 after maturation induction. Furthermore, exposure of α-synuclein pre-formed fibrils in the BCAS1-positive phase caused a reduction in oligodendroglial cell viability. Our results indicated that oligodendroglial maturation and myelination are impaired in the BCAS1-positive phase of MSA brains, which may lead to the insufficient replacement of defective oligodendrocytes. In vitro, the high susceptibility of BCAS1-expressing primary oligodendrocytes to the extracellular α-synuclein pre-formed fibrils suggests the involvement of insufficient oligodendroglial maturation in MSA disease progression and support the hypothesis that the BCAS1-positive oligodendrocyte lineage cells are prone to take up aggregated α-synuclein in vivo.


Subject(s)
Multiple System Atrophy/pathology , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Humans , Neoplasm Proteins , Nerve Tissue Proteins , Oligodendroglia/drug effects , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley
17.
Bioorg Med Chem Lett ; 30(16): 127299, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631519

ABSTRACT

Inducing oligodendrocyte progenitor cell (OPC) differentiation is a novel therapeutic strategy for the treatment of demyelinating diseases such as multiple sclerosis (MS). In the preceding article, we detailed the discovery of compound 1, a potent inducer of OPC differentiation possessing a characteristic spiroindoline structure. Also, we found that N-methylation and des-carbonyl compound 1 (4) led to a loss in potency. Herein, we describe our investigations of a conformation-based hypothesis for OPC differentiation activity based on the preferred conformation of the spiro core, and further structure-activity relationship (SAR) exploration led to the identification of 6-CF3 derivative 8, which was more potent compared to compound 1.


Subject(s)
Drug Design , Indoles/pharmacology , Oligodendrocyte Precursor Cells/drug effects , Spiro Compounds/pharmacology , Animals , Cell Differentiation , Dose-Response Relationship, Drug , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
18.
Int J Mol Med ; 46(3): 1217-1224, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32582975

ABSTRACT

The inflammatory cytokine interleukin (IL)­1ß has been implicated in demyelinating diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis, and brain degenerative diseases, such as Alzheimer's disease. However, the cellular and molecular mechanisms underlying the damaging effects of IL­1ß on myelination are poorly understood. Therefore, the present study was designed to investigate whether IL­1ß modifies the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) through regulating the miR­202­3p/ß­catenin/glioma­associated oncogene homolog 1 (Gli1) axis. It was observed that IL­1ß significantly attenuated the proliferation and differentiation of OPCs, as evidenced by a decrease in bromodeoxyuridine incorporation and reduced percentage of myelin basic protein­positive cells among the total number of oligodendrocyte transcription factor 2­positive cells. In addition, IL­1ß markedly decreased the expression of miR­202­3p and increased the protein expression of ß­catenin and Gli1, all of which were reversed by the IL­1ß inhibitor, IL­1Ra. Treatment with the ß­catenin inhibitor XAV939, Gli1 siRNA, or miR­202­3p mimic transfection, attenuated the IL­1ß­induced suppression of OPC proliferation and differentiation. Treatment with XAV939 decreased the expression of Gli1. Transfection of miR­202­3p mimic attenuated the expression of ß­catenin and Gli1. As demonstrated by the findings of the present study, IL­1ß suppressed the proliferation and differentiation of OPCs through regulation of the miR­202­3p/ß­catenin/Gli1 axis. Therefore, the miR­202­3p/ß­catenin/Gli1 axis may be of value as a therapeutic target in multiple sclerosis.


Subject(s)
Interleukin-1beta/metabolism , MicroRNAs/metabolism , Oligodendrocyte Precursor Cells/cytology , Oligodendrocyte Precursor Cells/metabolism , Zinc Finger Protein GLI1/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Heterocyclic Compounds, 3-Ring/pharmacology , Oligodendrocyte Precursor Cells/drug effects , beta Catenin/antagonists & inhibitors
19.
PLoS One ; 15(5): e0233859, 2020.
Article in English | MEDLINE | ID: mdl-32470040

ABSTRACT

Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or "stress media" (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 µg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.


Subject(s)
Adenosine Triphosphate/biosynthesis , Biotin/pharmacology , Cell Lineage/drug effects , Oligodendroglia/cytology , Adult , Animals , Animals, Newborn , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Oligodendrocyte Precursor Cells/cytology , Oligodendrocyte Precursor Cells/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Rats, Sprague-Dawley
20.
Mol Med ; 26(1): 32, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32272884

ABSTRACT

BACKGROUND: Vitamin D deficiency increases the risk of developing multiple sclerosis (MS) but it is unclear whether vitamin D supplementation improves the clinical course of MS, and there is uncertainty about the dose and form of vitamin D (D2 or D3) to be used. The mechanisms underlying the effects of vitamin D in MS are not clear. Vitamin D3 increases the rate of differentiation of primary oligodendrocyte precursor cells (OPCs), suggesting that it might help remyelination in addition to modulating the immune response. Here we analyzed the transcriptome of differentiating rat CG4 OPCs treated with vitamin D2 or with vitamin D3 at 24 h and 72 h following onset of differentiation. METHODS: Gene expression in differentiating CG4 cells in response to vitamin D2 or D3 was quantified using Agilent DNA microarrays (n = 4 replicates), and the transcriptome data were processed and analysed using the R software environment. Differential expression between the experimental conditions was determined using LIMMA, applying the Benjamini and Hochberg multiple testing correction to p-values, and significant genes were grouped into co-expression clusters by hierarchical clustering. The functional significance of gene groups was explored by pathway enrichment analysis using the clusterProfiler package. RESULTS: Differentiation alone changed the expression of about 10% of the genes at 72 h compared to 24 h. Vitamin D2 and D3 exerted different effects on gene expression, with D3 influencing 1272 genes and D2 574 at 24 h. The expression of the vast majority of these genes was either not changed in differentiating cells not exposed to vitamin D or followed the same trajectory as the latter. D3-repressed genes were enriched for Gene Ontology (GO) categories including transcription factors and the Notch pathway, while D3-induced genes were enriched for the Ras pathway. CONCLUSIONS: This study shows that vitamin D3, compared with D2, changes the expression of a larger number of genes in OLs. Identification of genes affected by D3 in OLs should help to identify mechanisms mediating its action in MS.


Subject(s)
Cholecalciferol/pharmacology , Ergocalciferols/pharmacology , Gene Expression Regulation/drug effects , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Computational Biology , Gene Expression Profiling , Rats , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...